Răspuns :
[tex]a = \sqrt{ (\sqrt{2}- \sqrt{5})^{2} } \\ a=| \sqrt{2} - \sqrt{5} | \\ a= \sqrt{5} - \sqrt{2} \\ \\ b= \sqrt{( \sqrt{2}+ \sqrt{5} )^{2} } \\ b=| \sqrt{2} + \sqrt{5} | \\ b= \sqrt{2} + \sqrt{5} \\ \\ a+b = \sqrt{5} - \sqrt{2} + \sqrt{2} + \sqrt{5} = 2 \sqrt{5} \\ \\ a*b = ( \sqrt{5} - \sqrt{2})( \sqrt{5} + \sqrt{2}) = ( \sqrt{5} ) ^{2} - ( \sqrt{2} )^{2}= 5-2=3 [/tex]
Radacina patrata va fi intotdeauna pozitiva.
a=|rad2-rad5| => a=rad5-rad2
b=rad2+rad5
a+b=rad5-rad2+rad2+rad5=2rad5
ab=(rad5-rad2)(rad5+rad2)=5-2=3
a=|rad2-rad5| => a=rad5-rad2
b=rad2+rad5
a+b=rad5-rad2+rad2+rad5=2rad5
ab=(rad5-rad2)(rad5+rad2)=5-2=3