Răspuns :
(x+1)^2 + 4(x+3) = 5
x^2 + 2x+ 1 + 4x + 12 = 5
x^2 + 6x +8 = 0
(m-n)x^2 + 2mx + 2m +2n-2 = 0
m-n = 1
2m = 6 => m = 3
2m+2n-2 = 8
m-n = 1, adica 3-n = 1, adica n=2
Se verifica si a treia relatie: 2m+2n-2 = 8, adica 2*3+2-2-2=8, 8=8
Deci m=3, n=2
x^2 + 2x+ 1 + 4x + 12 = 5
x^2 + 6x +8 = 0
(m-n)x^2 + 2mx + 2m +2n-2 = 0
m-n = 1
2m = 6 => m = 3
2m+2n-2 = 8
m-n = 1, adica 3-n = 1, adica n=2
Se verifica si a treia relatie: 2m+2n-2 = 8, adica 2*3+2-2-2=8, 8=8
Deci m=3, n=2
Ecuatiile sunt echivalente daca au coeficientii proportionali. Deci,
[tex] {x}^{2} + 6x + 8 = 0[/tex]
are coeficientii care indeplinesc conditia:
[tex] \dfrac{m - n}{1} = \dfrac{2m}{6} = \dfrac{2m + 2n - 2}{8} [/tex]
care conduce la sistemul
[tex] \left \{ {{2m - 3n = 0} \atop { - 2m - 6n = - 6}} \right.[/tex]
[tex] = = > n = \dfrac{2}{3} ,m = 1.[/tex]
[tex] {x}^{2} + 6x + 8 = 0[/tex]
are coeficientii care indeplinesc conditia:
[tex] \dfrac{m - n}{1} = \dfrac{2m}{6} = \dfrac{2m + 2n - 2}{8} [/tex]
care conduce la sistemul
[tex] \left \{ {{2m - 3n = 0} \atop { - 2m - 6n = - 6}} \right.[/tex]
[tex] = = > n = \dfrac{2}{3} ,m = 1.[/tex]