Răspuns :
[tex](a+1)x^2+(2a+3)x-a=0\\
\frac{1}{3} \text{ - solu\c tie, deci:}\\
(a+1)\cdot(\frac{1}{3})^2+(2a+3)\cdot \frac{1}{3}-a=0\\
(a+1)\cdot \frac{1}{9}+(2a+3)\cdot \frac{1}{3}-a=0\\
(a+1)+3(2a+3)-9a=0\\
a+1+6a+9-9a=0\\
2a=10\\
a=5[/tex]
[tex]\text{Ecua\c tia devine:}\\ (5+1)x^2+(2\cdot 5+3)x-5=0\\ 6\cdot x^2+13\cdot x-5=0\\ \Delta_x=169+120=289=17^2\\ x_{1,2}=\frac{-13\pm17}{2\cdot 6} \Rightarrow\\ x_1=\frac{-13+17}{12}=\frac{4}{12}=\frac{1}{3}\\ x_2=\frac{-13-17}{12}=\frac{-30}{12}=-\frac{5}{2}\\ \underline{a=5} \text{ \c si a doua solu\c tie este } \underline{-\frac{5}{2}}.[/tex]
[tex]\text{Ecua\c tia devine:}\\ (5+1)x^2+(2\cdot 5+3)x-5=0\\ 6\cdot x^2+13\cdot x-5=0\\ \Delta_x=169+120=289=17^2\\ x_{1,2}=\frac{-13\pm17}{2\cdot 6} \Rightarrow\\ x_1=\frac{-13+17}{12}=\frac{4}{12}=\frac{1}{3}\\ x_2=\frac{-13-17}{12}=\frac{-30}{12}=-\frac{5}{2}\\ \underline{a=5} \text{ \c si a doua solu\c tie este } \underline{-\frac{5}{2}}.[/tex]
Daca x = [tex] \dfrac{1}{3} [/tex]
, inlocuind în ecuatie, se obtine ecuatia [tex] \dfrac{a + 1}{9} + \dfrac{2a + 3}{ 3} - a = 0[/tex], care are ca solutie a = 5. Prin inlocuirea lui a în ecuatie, se obtine ecuatia
[tex] {6x}^{2} + 13x - 5 = 0.[/tex]
Calculam
[tex]\triangle = {b}^{2} - 4ac = = > \triangle = 289[/tex]
, iar [tex] \sqrt{ \triangle} = \sqrt{289} = 17.[/tex]
Atunci, solutiile ecuatiei sunt: [tex]x_{1} = \dfrac{ - 13 - 17}{12} = \dfrac{ - 30}{12} = - \dfrac{5}{2}[/tex]
;
[tex]x_{2} = \dfrac{ - 13 + 17}{12} = \dfrac{4}{12} = \dfrac{1}{3} .[/tex]
, inlocuind în ecuatie, se obtine ecuatia [tex] \dfrac{a + 1}{9} + \dfrac{2a + 3}{ 3} - a = 0[/tex], care are ca solutie a = 5. Prin inlocuirea lui a în ecuatie, se obtine ecuatia
[tex] {6x}^{2} + 13x - 5 = 0.[/tex]
Calculam
[tex]\triangle = {b}^{2} - 4ac = = > \triangle = 289[/tex]
, iar [tex] \sqrt{ \triangle} = \sqrt{289} = 17.[/tex]
Atunci, solutiile ecuatiei sunt: [tex]x_{1} = \dfrac{ - 13 - 17}{12} = \dfrac{ - 30}{12} = - \dfrac{5}{2}[/tex]
;
[tex]x_{2} = \dfrac{ - 13 + 17}{12} = \dfrac{4}{12} = \dfrac{1}{3} .[/tex]