Răspuns :
Se da:
ΔABC echilateral cu AB = 18 m
D ∈ BC si este situat pe prelungirea laturii BC cu CD = 9 m.
E ∈ AD astfel incat <ACE congruent <DCE
Se cere:
a) Aria DABC = 81√3 m²
b) EC || AB
c) Perimetrul ΔEAC = 6(4+√7) m
Rezolvare:
[tex]\displaystyle\\ a)\\ \Delta ABC\text{este echilateral.}\\\\ A_{\Delta ABC}=\frac{l^2\sqrt{3}}{4}=\frac{AB^2\sqrt{3}}{4}=\frac{18^2\sqrt{3}}{4}=\frac{324\sqrt{3}}{4}=\boxed{\bf81\sqrt{3}~m^2} [/tex]
[tex]\displaystyle\\ b)\\ \text{Unghiul ACD este un unghi exterior triunghiului ABC.}\\ \Longrightarrow~m(\angle ACD)=m(\angle CAB)+m(\angle ABC)=60^o+60^o=120^o\\ \ \textless \ ACE\text{ congruent cu }\ \textless \ DCE~~\text{(din enunt)}\\ \Longrightarrow~~CE\text{ este bisectoarea unghiului ACD.}\\ \Longrightarrow~~m(\angle ECD)=\frac{\angle ACD}{2}=\frac{120^o}{2}=60^o\\ m(\angle ABC)=60^o~~\text{triunghiul ABC fiind echilateral}\\ \Longrightarrow~~m(\angle ECD)=m(\angle ABC)=60^o\\ \Longrightarrow~~\boxed{\bf EC~||~AB}[/tex]
[tex]\displaystyle\\ c)\\ \text{In triunghiul DAB avem:}\\ CD=9~m\\ DB=BC+CD=18+9=27~m\\ EC~||~AB\\\\ \text{Aplicam T. Thales in triunghiul DAB pentru a calcula segmentul EC.}\\\\ \frac{DC}{DB}=\frac{EC}{AB}\\\\ \frac{9}{27}=\frac{EC}{18} \\\\ EC = \frac{18\times 9}{27}=\frac{18}{3}=6~m\\\\ \text{In triunghiul EAC avem: }\\ AC=18~m\\ EC=6~m\\ m(\angle ACE)= m(\angle DCE)=60^o\text{ CE fiind bisectoare.}[/tex]
[tex]\displaystyle\\ \text{Aplicam T. Pitagora generalizata pentru a calcula latura AE.}\\\\ AE^2 = AC^2+CE^2 - 2\times AC \times CE\times cos(\widehat{ACE})\\ AE^2 = 18^2+6^2 - 2\times 18\times 6\times cos(60^o)\\\\ AE^2 = 18^2+6^2 - 2\times 18\times 6\times \frac{1}{2} \\ AE^2 = 324+36 - 18\times 6 \\ AE^2 = 324+36 - 108 \\ AE^2 = 252 \\ AE = \sqrt{252}=\sqrt{36\times7}=6\sqrt{7} \\\\ P_{\Delta ACE}=AC + CE + AE \\ P_{\Delta ACE}=18+6+6\sqrt{7}=24+6\sqrt{7}=\boxed{6\Big(\bf 4+\sqrt{7}\Big)~m} [/tex]