Răspuns :
a)Numitorul unei fractii nu poate fii zero, deci cautam x a.I numitorul sa fie 0
x = 0
x + 1 = 0 => x = -1
[tex] {x}^{2} + x = 0 \\ x(x + 1) = 0 \\ = > x = 0 \\ = > x + 1 = 0 = > x = - 1[/tex]
[tex] {x}^{2} + 3x = 0 \\ x(x + 3) = 0 \\ = > x = 0 \\ = >x + 3 = 0 = > x = - 3[/tex]
=> x apartine lui R \ { -3 , -1 , 0}
b)
[tex]( \frac{x + 1}{x} - \frac{x - 1}{x + 1} + \frac{1 - x}{x(x + 1)}) \times \frac{ {x}^{2} + 3x }{2(x - 2)} \\ ( \frac{x + 1}{x} + \frac{ - x(x - 1) + 1 - x}{x(x + 1)} ) \times \frac{x(x + 3)}{2(x - 2)} \\ ( \frac{x + 1}{x} + \frac{ - {x}^{2} + x + 1 - x}{x(x + 1)} ) \times \frac{x(x + 3)}{2(x - 2)} \\ (\frac{x + 1}{x} + \frac{ 1 - {x}^{2} }{x(x + 1)} ) \times \frac{x(x + 3)}{2(x - 2)} \\ ( \frac{x + 1}{x} + \frac{(1 - x)(1 + x)}{x(x + 1)} ) \times \frac{x(x + 3)}{2(x - 2)} \\ ( \frac{x + 1}{x} + \frac{1 - x}{x} ) \times \frac{x(x + 3)}{2(x - 2)} \\ \frac{x + 1 + 1 - x}{x} \times \frac{x(x + 3)}{2(x - 2)} \\ 2 \times \frac{x + 3}{2(x - 2)} \\ \frac{x + 3}{x - 2} [/tex]
c)
Fractia aceasta apartine lui Z
[tex]x - 2 \: | \: x + 3 \\ x - 2 |x - 2[/tex]
Partile din dreapta le scazi
=>
[tex]x - 2 |5[/tex]
x - 2 apartine { -5, -1, 1, 5}
x apartine {-3; 3 ; 7}
( 2 nu poate fi pt ca numitorul ar fi 0)
x = 0
x + 1 = 0 => x = -1
[tex] {x}^{2} + x = 0 \\ x(x + 1) = 0 \\ = > x = 0 \\ = > x + 1 = 0 = > x = - 1[/tex]
[tex] {x}^{2} + 3x = 0 \\ x(x + 3) = 0 \\ = > x = 0 \\ = >x + 3 = 0 = > x = - 3[/tex]
=> x apartine lui R \ { -3 , -1 , 0}
b)
[tex]( \frac{x + 1}{x} - \frac{x - 1}{x + 1} + \frac{1 - x}{x(x + 1)}) \times \frac{ {x}^{2} + 3x }{2(x - 2)} \\ ( \frac{x + 1}{x} + \frac{ - x(x - 1) + 1 - x}{x(x + 1)} ) \times \frac{x(x + 3)}{2(x - 2)} \\ ( \frac{x + 1}{x} + \frac{ - {x}^{2} + x + 1 - x}{x(x + 1)} ) \times \frac{x(x + 3)}{2(x - 2)} \\ (\frac{x + 1}{x} + \frac{ 1 - {x}^{2} }{x(x + 1)} ) \times \frac{x(x + 3)}{2(x - 2)} \\ ( \frac{x + 1}{x} + \frac{(1 - x)(1 + x)}{x(x + 1)} ) \times \frac{x(x + 3)}{2(x - 2)} \\ ( \frac{x + 1}{x} + \frac{1 - x}{x} ) \times \frac{x(x + 3)}{2(x - 2)} \\ \frac{x + 1 + 1 - x}{x} \times \frac{x(x + 3)}{2(x - 2)} \\ 2 \times \frac{x + 3}{2(x - 2)} \\ \frac{x + 3}{x - 2} [/tex]
c)
Fractia aceasta apartine lui Z
[tex]x - 2 \: | \: x + 3 \\ x - 2 |x - 2[/tex]
Partile din dreapta le scazi
=>
[tex]x - 2 |5[/tex]
x - 2 apartine { -5, -1, 1, 5}
x apartine {-3; 3 ; 7}
( 2 nu poate fi pt ca numitorul ar fi 0)