👤
a fost răspuns

S=1+3la puterea 1 + 3la puterea 2 ........ + 3la puterea 203 . Cerință e sa afli dacă S este divizibil cu 4 , 13 și 10

Răspuns :

Tinem cont de faptul ca in total sunt 204 determeni,iar 204 este divizibil cu 2,3 si 4.(ne va ajuta asta mai tarziu)
[tex]S=1+3+3^2+_{\dots}+3^{203}\\ \text{Mai intai cu 3:}\\ S=(1+3)+3^2(1+3)+_{\dots}+ 3^{202}(1+3)\\ S=(1+3)(1+3^2+3^4+_{\dots}+3^{202})\\ S=4\cdot (1+3^2+3^4+_{\dots}+3^{202})\vdots\ 4\\ [/tex]
[tex]\text{Apoi cu 13:}\\ S=(1+3+3^2)+3^3(1+3+3^2)+_{\dots}+3^{201}(1+3+3^2)\\ S=(1+3+3^2)(1+3^3+3^6+_{\dots}+3^{201})\\ S=13\cdot (1+3^3+3^6+_{\dots}+3^{201})\vdots\ 13\\ \\ \text{In cele din urma cu 10:}\\ S=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+_{\dots}+3^{200}(1+3+3^2+3^3)\\ S=(1+3+3^2+3^3)(1+3^4+3^8+_{\dots}+3^{200})\\ S=40 \cdot (1+3^4+3^8+_{\dots}+3^{200})\\ S=10\cdot 4\cdot (1+3^4+3^8+_{\dots}+3^{200})\vdots 10[/tex]