Răspuns :
4xy+y-6x+5=0
y(4x+1)=6x-5
y=(6x-5)/(4x+1)∈Z
4x+1|6x-5
4x+1|12x-10, multiplu al lui 6x-5
4x+1|12x+3-13
4x+1|3(4x+1)-13
4x+1|-13
4x+1∈D13Z
4x+1∈{-13;-1;1;13}
4x∈{-14;-2;0;12}
cu conditia x∈Z, convin doar x=12:4=3
si x=0:4=0
verificam pt y
y=(6*3-5)/(4*3+1)=13/13=1 ∈Z
y=(6*9-5)(4*0+1)=-5/1=-5∈Z
solutiile trebuie insa verificata pt ca , la amplificare cu 2, am introdus solutiii in plus; sa nu fie dintre acelea
4*3*1+1-6*3+5=12+1-18+5=0
este buna
si 4*0*(-5)-5-6*0+5=-5+5=0
buna si asta
deci
(x;y)∈{(3;1);(0;-5)}
y(4x+1)=6x-5
y=(6x-5)/(4x+1)∈Z
4x+1|6x-5
4x+1|12x-10, multiplu al lui 6x-5
4x+1|12x+3-13
4x+1|3(4x+1)-13
4x+1|-13
4x+1∈D13Z
4x+1∈{-13;-1;1;13}
4x∈{-14;-2;0;12}
cu conditia x∈Z, convin doar x=12:4=3
si x=0:4=0
verificam pt y
y=(6*3-5)/(4*3+1)=13/13=1 ∈Z
y=(6*9-5)(4*0+1)=-5/1=-5∈Z
solutiile trebuie insa verificata pt ca , la amplificare cu 2, am introdus solutiii in plus; sa nu fie dintre acelea
4*3*1+1-6*3+5=12+1-18+5=0
este buna
si 4*0*(-5)-5-6*0+5=-5+5=0
buna si asta
deci
(x;y)∈{(3;1);(0;-5)}
[tex]\it 4xy+y-6 x+5=0 \Leftrightarrow y(4x+1) -(6x-5) =0 \Leftrightarrow \\\;\\ \Leftrightarrow y(4x+1) = 6x-5\Leftrightarrow y=\dfrac{6x-5}{4x+1} \ \ \ (1) \\\;\\ \\\;\\ y\in \mathbb{Z} \stackrel{(1)}{\Longrightarrow} \dfrac{6x-5}{4x+1} \in \mathbb{Z} \Rightarrow 4x+1|6x-5\ /_{\cdot2}\Rightarrow 4x+1| 12x-10 \ \ \ (2)[/tex]
[tex]\it Dar,\ 4x+1|4x+1\ \ /_{\cdot3} \Rightarrow 4x+1|12x+3 \ \ \ \ (3) \\\;\\ (2),\ (3) \Rightarrow 4x+1 |13 \Rightarrow 4x+1 \in\{-13,\ -1,\ 1,\ 13\}|_{-1} \Rightarrow \\\;\\ \Rightarrow 4x\in \{-14,\ -2,\ 0,\ 12\}|:4 \stackrel{x\in\mathbb{Z}}{\Longrightarrow} x\in \{0,\ 3\} \ \ \ \ (4) [/tex]
[tex]\it (1), \ (3) \Rightarrow (x,\ y) \in \{(0,\ -5),\ (3,\ 1)\}[/tex]