Răspuns :
[tex]\it f'(x)=(lgx)' = \left(\dfrac{ln x}{ln10}\right)' = \dfrac{1}{x\cdot ln10} \\\;\\ \\\;\\ f'\left(\dfrac{1}{10}\right) = \dfrac{1}{\dfrac{1}{10}ln10} = \dfrac{10}{ln10}[/tex]
[tex]\it f'(x) = (x^2)'=2x \\\;\\ f'(60) = 2\cdot60=120[/tex]
b) f'(x)=(lgx)'=1/xln10
f'(1/10)= 1/(1/10)*ln10= 10/ln10
c) f'(x) = (x^2)'= 2x
f'(60) = 2*60=120.
f'(1/10)= 1/(1/10)*ln10= 10/ln10
c) f'(x) = (x^2)'= 2x
f'(60) = 2*60=120.