(x-1)([tex] x^{2} [/tex]+1)[tex] \leq [/tex]0
dar [tex] x^{2} [/tex] [tex] \geq [/tex] 0 /+1
=> [tex] x^{2} [/tex]+1[tex] \geq [/tex]1
=> inmultind relatia (x-1)([tex] x^{2} [/tex]+1)[tex] \leq [/tex]0 cu ([tex] x^{2} [/tex]+1)
=> x-1[tex] \leq [/tex]0 /+1
=> x[tex] \leq [/tex]1
=> x∈(-∞ , 1]
=> S = (-∞ , 1]