Răspuns :
[tex]U(n)=U(16^{2006}+17^{2007}+18^{2008}+19^{2009}+10^{2010})=\\\\ =U(6^{2006}+7^{2007}+8^{2008}+9^{2009}+10^{2010}\\\\ =U[U(6^{2006})+U(7^{2007})+U(8^{2008})+U(9^{2009})+U(10^{2010})]=\\\\ =U[6+U(7^{2004+3})+U(8^{2008})+U(9^{2008+1})+0]=\\\\ =U[6+U(7^{4\times 501+3})+U(8^{4\times 502})+U(9^{2\times 1004+1})+0]=\\\\ =U[6+U((7^{4})^{501}\times 7^3})+U((8^{4})^{502})+U((9^{2})^ {1004}\times 9^1})+0]= [/tex]
[tex]=U[6+U(2401^{501}\times 343)+U(4096^{502})+U(81^ {1004}\times 9^1)+0]=\\\\ =U[6+U(1\times 343)+6+U(1\times 9)+0]=\\\\ =U[6+3+6+9+0]=U[24]= \boxed{\bf 4}[/tex]