E(x)=x²/(x²+1)
F(x)=1/(x²+1)
a) F(-2)=1/(-2)²+1=1/5
E(-1/2)=(-1/2)²/(-1/2)²+1=1/4:(1/4+1)=1/4:5/4=1/4·4/5=1/5
⇒F(-2)=E(-1/2)
b) F(a)=1/(a²+1)
E(1/a)=(1/a)²/(1/a)²+1=1/a²:(1/a²+1)=1/a²:(1+a²)/a²=1/a²·a²/(a²+1)=1/(a²+1)
⇒F(a)=E(1/a)
c) E(x)+F(x)=x²/(x²+1)+1/(x²+1)=(x²+1)/(x²+1)=1
d)E(b)=b²/(b²+1)
b²/(b²+1)>1/2
2b²>b²+1
2b²-b²>1
b²>1
F(b)=1/b²+1
1/(b²+1)<1/2
2<b²+1
-b²<1-2
-b²<-1 (-1)
b²>1
e)E(x)-F(x)=0
x²/(x²+1)-1/(x²+1)=0
(x²-1)/(x²+1)=0
x²-1=0
x²=1
x₁=1
x₂=-1
x∈{-1,1}