Răspuns :
√18 il simplificam = 3√2
2×3√2−5√8+3√2−√50√8 il simplificam 2√2
2×3√2−5×2√2+3√2−√50
√50 il simplificam 5√2
2×3√2−5×2√2+3√2−5√22×3√2 il simplificam= 6√2
6√2−5×2√2+3√2−5√25×2√2 il simplifica =10√2
6√2−10√2+3√2−5√2= −6√2
b
3√2−(7√2−5√6−3√8+√30) ..... simplificam √8 =2√2
3√2−(7√2−5√6−3×2√2+√30) 3×2√2= 6√2 3√2−(7√2−5√6−6√2+√30) aranjam un pic3√2−((7√2−6√2)−5√6+√30)
simplificam(7√2−6√2)−5√6+√30 =√2−5√6+√30
3√2−(√2−5√6+√30)
3√2−√2+5√6−√30
(3√2−√2)+5√6−√30= iar rezultatul= 2√2+5√6−√30
c 5√98−2√162+[tex] \sqrt[3]{375} - 2 \sqrt[3]{192} [/tex]
√98 = 7√2
5×7√2−2√162+3√375−23√192
√162= [tex]9 \sqrt{2} [/tex]
5×7√2−2×9√2+3√375−23√192 simplificam √375=5√3 (nu uita de 3 deasupra radicalului)
deasemenea simplificam [tex] \sqrt[3]{192} = 4\sqrt[3]{3} [/tex]
35√2−2×9√2+5<3>√3−2×4<3>√3 (<3> e deasupra radicalului)
2×9√2=18√2
35√2−18√2+5<3>√3−2×4<3>√3
35√2−18√2+5<3>√3−8<3>√3
(35√2−18√2)+(5<3>√3−8<3>√3)
iar rezultatul este = 17√2+5<3>√3−8<3>√3
d <3>√175−3<3>√24+2<3>√192
<3>√24= 2<3>√3
<3>√175−3×2<>3√3+2<3>√192
<3>√192=4<3>√3
<3>√175−3×2<3>√3+2×4<3>√3
<3>√175−6<3>√3+2×4<3>√3
iar rezultatul =<3>√175−6<3>√3+8<3>√3
e
<3>√16+<3>√40−2<3>√250
<3>√16=2<3>√2
2<3>√2+<3>√40−2<3>√250
<3>√40=2<3>√5
2<3>√2+2<3>√5−2<3>√250
<3>√250 =5<3>√2
2<3>√2+2<3>√5−2×5<3>√2
folosim o regula [tex] x^{a} x^{b} = x^{a+b}[/tex]
[tex]2la puterea \frac{4}{3} [/tex] +2<3>√5−2×5<3>√2
2×5<3>√2= 10<3>√2
iar rezultatul
[tex]2la puterea \frac{4}{3} [/tex] +2<3>√5−10<3>√2
Finish.....finally
2×3√2−5√8+3√2−√50√8 il simplificam 2√2
2×3√2−5×2√2+3√2−√50
√50 il simplificam 5√2
2×3√2−5×2√2+3√2−5√22×3√2 il simplificam= 6√2
6√2−5×2√2+3√2−5√25×2√2 il simplifica =10√2
6√2−10√2+3√2−5√2= −6√2
b
3√2−(7√2−5√6−3√8+√30) ..... simplificam √8 =2√2
3√2−(7√2−5√6−3×2√2+√30) 3×2√2= 6√2 3√2−(7√2−5√6−6√2+√30) aranjam un pic3√2−((7√2−6√2)−5√6+√30)
simplificam(7√2−6√2)−5√6+√30 =√2−5√6+√30
3√2−(√2−5√6+√30)
3√2−√2+5√6−√30
(3√2−√2)+5√6−√30= iar rezultatul= 2√2+5√6−√30
c 5√98−2√162+[tex] \sqrt[3]{375} - 2 \sqrt[3]{192} [/tex]
√98 = 7√2
5×7√2−2√162+3√375−23√192
√162= [tex]9 \sqrt{2} [/tex]
5×7√2−2×9√2+3√375−23√192 simplificam √375=5√3 (nu uita de 3 deasupra radicalului)
deasemenea simplificam [tex] \sqrt[3]{192} = 4\sqrt[3]{3} [/tex]
35√2−2×9√2+5<3>√3−2×4<3>√3 (<3> e deasupra radicalului)
2×9√2=18√2
35√2−18√2+5<3>√3−2×4<3>√3
35√2−18√2+5<3>√3−8<3>√3
(35√2−18√2)+(5<3>√3−8<3>√3)
iar rezultatul este = 17√2+5<3>√3−8<3>√3
d <3>√175−3<3>√24+2<3>√192
<3>√24= 2<3>√3
<3>√175−3×2<>3√3+2<3>√192
<3>√192=4<3>√3
<3>√175−3×2<3>√3+2×4<3>√3
<3>√175−6<3>√3+2×4<3>√3
iar rezultatul =<3>√175−6<3>√3+8<3>√3
e
<3>√16+<3>√40−2<3>√250
<3>√16=2<3>√2
2<3>√2+<3>√40−2<3>√250
<3>√40=2<3>√5
2<3>√2+2<3>√5−2<3>√250
<3>√250 =5<3>√2
2<3>√2+2<3>√5−2×5<3>√2
folosim o regula [tex] x^{a} x^{b} = x^{a+b}[/tex]
[tex]2la puterea \frac{4}{3} [/tex] +2<3>√5−2×5<3>√2
2×5<3>√2= 10<3>√2
iar rezultatul
[tex]2la puterea \frac{4}{3} [/tex] +2<3>√5−10<3>√2
Finish.....finally