👤
Andreiutz26
a fost răspuns

Aratai ca x + y + z + 2 = x*y*z daca
x = log in baza a din bc
y = log in baza b din ac
z = log in baza c din ab


Răspuns :

Razzvy
Vom folosi urmatoarele formule:
[tex]log_a(xy)=log_ax+log_ay\\ a^{log_ab}=b\\ log_a(x^y)=y\cdot log_ax \rightarrow log_ab \cdot log_bc=log_a(b^{log_bc})=log_ac\\ log_ab\cdot log_ba = 1[/tex]

Conditiile de existenta pentru logaritmi:
a, b, c > 0 si a, b, c ≠ 1

Cum relatia de egalitate este o relatie de echivalenta, putem scrie expresia invers fata a afecta demonstratia:
xyz = x + y + z +  2

Inlocuim:
[tex]xyz=log_a(bc)\cdot log_b(ac)\cdot log_c(ab)=\\ =(log_ab+log_ac)(log_ba+log_bc)(log_ca+log_cb)=\\\\ =(log_ab\cdot log_ba+log_ab\cdot log_bc+log_ac\cdot log_ba+log_ac\cdot log_bc)\cdot\\ \cdot(log_ca+log_cb)=\\\\ =(1+log_a(b^{log_bc})+log_b(a^{log_ac})+log_ac\cdot log_bc)(log_ca+log_cb)\\\\ =(1+log_ac+log_bc+log_ac\cdot log_bc)(log_ca+log_cb)=\\\\ [/tex][tex]=log_ca+log_cb+(log_ac\cdot log_ca)+(log_ac\cdot log_cb)+(log_bc\cdot log_ca)+\\ +(log_bc\cdot log_cb)+(log_ac\cdot log_bc\cdot log_ca) +(log_ac\cdot log_bc \cdot log_cb)=\\\\ =log_c(ab)+1+log_ab+log_ba+1+log_bc+log_ac=\\\\ =log_a(bc)+log_b(ac)+log_c(ab)+2=x+y+z+2[/tex]