👤
AriaUsagi
a fost răspuns

Va rog, puţin ajutor! :(
S = 1/1001 + 1/1002 + ... + 1/2000. Aratati ca 1/2 < S < 1.
Multumesc! :)


Răspuns :

[tex] \frac{1}{1001}>\frac{1}{1002}>...>\frac{1}{2000}[/tex]

=> [tex] \frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}>\frac{1}{2000}+\frac{1}{2000}+...+\frac{1}{2000}[/tex]

( [tex] \frac{1}{2000} [/tex] se repeta de 1000 de ori)

=> [tex] \frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}>\frac{1}{2000}*1000[/tex]

=> [tex] \frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}>\frac{1}{2}[/tex]

=> S> [tex] \frac{1}{2} [/tex] (1)

[tex] \frac{1}{2000}< \frac{1}{1999}<...<\frac{1}{1001}<\frac{1}{1000}[/tex]


=> [tex] \frac{1}{2000}+ \frac{1}{1999}+...+\frac{1}{1001}<\frac{1}{1000}+\frac{1}{1000}+...+\frac{1}{1000}[/tex]


( [tex] \frac{1}{1000}[/tex] se repeta de 1000 de ori)

=> [tex] \frac{1}{2000}+ \frac{1}{1999}+...+\frac{1}{1001}<\frac{1}{1000}*1000[/tex]

=>[tex] \frac{1}{2000}+ \frac{1}{1999}+...+\frac{1}{1001}<1[/tex]

=> S<1 (2)

Din (1) si (2) => [tex] \frac{1}{2} [/tex]