Răspuns :
ab = 10a+b ba = 10b+a 132 = 11×12
⇒ ab + ba + 132
= 10a + b + 10b + a +11×12
= 11a+11b + 11×12 = 11[a+b] +11×12 = 11 (a+b+12)
⇒11- divizibil cu 11⇒ ab+ba +132 - divizibil cu 11
⇒ ab + ba + 132
= 10a + b + 10b + a +11×12
= 11a+11b + 11×12 = 11[a+b] +11×12 = 11 (a+b+12)
⇒11- divizibil cu 11⇒ ab+ba +132 - divizibil cu 11
[tex]\it \overline{ab} + \overline{ba} +132 = 10a+b+10b+a+132 = 11a+11b+11\cdot12 = \\\;\\ =11\cdot(a+b+12) \in M_{11} \Rightarrow 11|( \overline{ab} + \overline{ba} +132 )[/tex]