Răspuns :
|x| >|x+1|
|x| - |x+1| > 0
x-(x+1)>0 ,x ≥ 0 ,x+1 ≥0
-x-(x+1)>0 ,x <0, x+1≥0
x-(-(x+1)>0, x≥0 x+1<0
-x-(-(x+1)) >0 ,x<0 , x+1<0
x ∈ Ø ,x≥0, x≥-1
x< - 1/2, x<0 , x≥ -1
x > - 1/2, x∈Ø
x ∈ R , x∈(-∞,-1)
x ∈ Ø
x ∈ (-1,-1/2)
x ∈ (-∞,-1)
deci x ∈ (-∞,-1/2)
|x| - |x+1| > 0
x-(x+1)>0 ,x ≥ 0 ,x+1 ≥0
-x-(x+1)>0 ,x <0, x+1≥0
x-(-(x+1)>0, x≥0 x+1<0
-x-(-(x+1)) >0 ,x<0 , x+1<0
x ∈ Ø ,x≥0, x≥-1
x< - 1/2, x<0 , x≥ -1
x > - 1/2, x∈Ø
x ∈ R , x∈(-∞,-1)
x ∈ Ø
x ∈ (-1,-1/2)
x ∈ (-∞,-1)
deci x ∈ (-∞,-1/2)
[tex]|x|\ \textgreater \ |x+1| \Rightarrow |x|-|x+1|\ \textgreater \ 0 \\ \\ |x|-|x+1| =\left\{ \begin{array}{c} -x-\big(-(x+1)\big),\quad x\ \textless \ -1\\ 1, \quad x=-1 \\ -x-(x+1),\quad x\in(-1,0) \\ -1,\quad x=0\\ x-(x+1), \quad x\ \textgreater \ 0 \end{array} \right|\\ \\ \boxed{1}\quad $Daca $ x\ \textless \ -1: \\ \\ -x-\big(-(x+1)\big)\ \textgreater \ 0 \Rightarrow -x+x+1\ \textgreater \ 0 \Rightarrow 1\ \textgreater \ 0,\quad \forall x\in \mathbb_{R}$ \\ \\ $ $ Dar $ x\ \textless \ -1 \Rightarrow\boxed{ x\in (-\infty,-1)}\\ \\ \boxed{2} \quad $Daca $ x=-1: \\ \\[/tex]
[tex] 1 \ \textgreater \ 0,\quad \forall x\in \mathbb_{R},$ $ $ Dar, $ x=-1 \Rightarrow \boxed{x \in \Big\{-1\Big\}} \\ \\ \boxed{3}\quad $ Daca $ x\in(-1,0): \\ \\ -x-(x+1)\ \textgreater \ 0 \Rightarrow -x-x-1\ \textgreater \ 0 \Rightarrow -2x-1\ \textgreater \ 0 \Rightarrow \\ \\ \Rightarrow -2x\ \textgreater \ 1 \Big|\cdot (-1) \Rightarrow 2x<-1 \Rightarrow x<-\dfrac{1}{2}, $ Dar $ x \in (-1,0) \Rightarrow \\ \\ \Rightarrow \boxed{x\in \Big(-1,-\dfrac{1}{2}\Big)} \\ \\ \\ [/tex]
[tex]\boxed{4}\quad $Daca $x=0: \\ \\ -1\ \textgreater \ 0 $ $(F) \Rightarrow \boxed{x\in \emptyset}[/tex]
[tex]\boxed{5} \quad $Daca $ x\ \textgreater \ 0:\\ \\ x-(x+1) \ \textgreater \ 0 \Rightarrow x-x-1\ \textgreater \ 0 \Rightarrow -1\ \textgreater \ 0 \Rightarrow \boxed{x\in \emptyset} \\ \\ \\ $Din \boxed{1} \cup $ $\boxed{2} $ $\cup $ $\boxed{3}$ $\cup $ $\boxed{4}$ $\cup $ $\boxed{5} \Rightarrow \boxed{S = \Big(-\infty, -\dfrac{1}{2}\Big)}[/tex]
[tex] 1 \ \textgreater \ 0,\quad \forall x\in \mathbb_{R},$ $ $ Dar, $ x=-1 \Rightarrow \boxed{x \in \Big\{-1\Big\}} \\ \\ \boxed{3}\quad $ Daca $ x\in(-1,0): \\ \\ -x-(x+1)\ \textgreater \ 0 \Rightarrow -x-x-1\ \textgreater \ 0 \Rightarrow -2x-1\ \textgreater \ 0 \Rightarrow \\ \\ \Rightarrow -2x\ \textgreater \ 1 \Big|\cdot (-1) \Rightarrow 2x<-1 \Rightarrow x<-\dfrac{1}{2}, $ Dar $ x \in (-1,0) \Rightarrow \\ \\ \Rightarrow \boxed{x\in \Big(-1,-\dfrac{1}{2}\Big)} \\ \\ \\ [/tex]
[tex]\boxed{4}\quad $Daca $x=0: \\ \\ -1\ \textgreater \ 0 $ $(F) \Rightarrow \boxed{x\in \emptyset}[/tex]
[tex]\boxed{5} \quad $Daca $ x\ \textgreater \ 0:\\ \\ x-(x+1) \ \textgreater \ 0 \Rightarrow x-x-1\ \textgreater \ 0 \Rightarrow -1\ \textgreater \ 0 \Rightarrow \boxed{x\in \emptyset} \\ \\ \\ $Din \boxed{1} \cup $ $\boxed{2} $ $\cup $ $\boxed{3}$ $\cup $ $\boxed{4}$ $\cup $ $\boxed{5} \Rightarrow \boxed{S = \Big(-\infty, -\dfrac{1}{2}\Big)}[/tex]