A) (y+2/4y+6)÷2y+4/2y+3
(y+1/2y+6)*1/2y+2/y+3
2y^2+1+12y/2*1/2+2/y+3
2y^2+1+12y/4+2/y+3
y(2y^2+1+12y)+8+12y/4y
2y^3+13y+12y^2+8/4y= 2y^3+12y^2+13y+8/4y
B) . (n+1/n+2)×(n+2/n+3)÷(n+1/n+3)
(n+1)*1/n+3*n+3/n+1 ( simplifici) =1
C) (2m+3/6p+4)÷(4m+6/9p+6)+(3n+3/8q+20)×(2q+1/3×(n+1))=
2m+3/2(3q+2)*9p+6/4m+6+3(n+1)/8q+20*2q+1/3(n+1)=
2m+3/2(3q+2)*3(3q+2)/2(2m+3)+1/8q+20)*92q+1)=
1/2*3/2+2q+1/8q+20=
3/4+2q+1/4(2q+5)=
3(2q+5)+2q+1/4(2q+5)=
6q+15+2q+1/4(2q+5)=
8q+16=4(2g+5)=
4(2q+4)/4(2q+5)=
=2q+4/2q+5