[tex] \frac{(n+1)!}{(n-1)!}= \frac{1*2*3*...*(n-1)*n*(n+1)}{1*2*3*..*(n-1)}=n(n+1) [/tex]
[tex]n(n+1)=-4n+6\\
n^2+n+4n-6=0\\
n^2+5n-6=0\\
\Delta=25 + 4*6=49\\
n_{1,2}= \frac{-5\pm \sqrt{\Delta} }{2}= \frac{-5\pm7}{2} \\
n_1=1\\
n_2=-6[/tex]
NI se spune deja ca n ≥ 1 ==> n nu poate fi -6
Raspuns final n = 1