👤

Demonstrati identitatea :

sin x + sin 3x + sin 5x + sin 7x = 4 × cos x × cos 2x × sin 4x


Răspuns :

Salut,

[tex]sina+sinb=2\cdot sin\left(\dfrac{a+b}{2}\right)\cdot cos\left(\dfrac{a-b}{2}\right).\\\\cosa+cosb=2\cdot cos\left(\dfrac{a+b}{2}\right)\cdot cos\left(\dfrac{a-b}{2}\right).\\\\sin(7x)+sinx+sin(5x)+sin(3x)=\\\\=2\cdot sin\left(\dfrac{7x+x}{2}\right)\cdot cos\left(\dfrac{7x-x}{2}\right)+2\cdot sin\left(\dfrac{5x+3x}{2}\right)\cdot cos\left(\dfrac{5x-3x}{2}\right)=\\\\=2\cdot sin(4x)\cdot cos(3x)+2\cdot sin(4x)\cdot cosx=2\cdot sin(4x)[cos(3x)+cosx]=\\\\=2\cdot sin(4x)\cdot 2\cdot cos\left(\dfrac{3x+x}{2}\right)\cdot cos\left(\dfrac{3x-x}{2}\right)=\\\\=4\cdot sin(4x)\cdot cos(2x)\cdot cosx,\ ceea\ ce\ trebuia\ demonstrat.[/tex]

Green eyes.