[tex]\displaystyle Se~da:\\ \\
\rho_0=7,8\frac{g}{cm^3}=7800\frac {kg}{m^3}\\ \\
V_0=1dm^3=0,001m^3\\ \\
t_0=0^\circ\\ \\
t=200^\circ\\ \\
\rho=7,790\frac g{cm^3}=7790\frac {kg}{m^3}\\ \\
\Delta V=?m^3\\ \\ \\[/tex]
[tex]\displaystyle Formule:\\ \\
\alpha=\frac{\Delta V}{V_0\times \Delta t}\\ \\
\Delta V=V_0\times \alpha\times \Delta t\\ \\ \\
\alpha=\frac{\Delta\rho}{\rho_0\times \Delta t}\\ \\
\alpha=\frac{\rho_0-\rho}{\rho_0\times \Delta t}\\ \\
\alpha\times\Delta t=\frac{\rho_0-\rho}{\rho_0}\\ \\ \\
\Delta V=V_0\times \frac{\rho_0-\rho}{\rho_0}\\ \\ \\
Calcule:\\ \\
\Delta V=0,001\times \frac{7800-7790}{7800}=1,28\times 10^{-6}m^3[/tex]