👤

De dau
a=2+radical din 3
b=2-radical din 3

Arătați că a•b=1
Arătați că (a+b) la a doua minus (a-b) la a doua =4


Răspuns :

a = 2 + v3
b = 2 - v3

a × b = (2+v3)(2-v3) = 2^2 - v3^2 = 4 - 3 = 1
sau
(2+v3)(2-v3) = 4 - 2v3 + 2v3 - 3 = 4-3 = 1

(a+b)^2 - (a-b)^2 =
= (2+v3 + 2-v3)^2 - (2+v3-2+v3)^2 =
= 4^2 - (2v3)^2 =
= 16 - 4×3 =
= 16 - 12 =
= 4

^ = putere
v = radical


[tex]\it a=2+\sqrt3 ,\ \ \ b=2-\sqrt3 \\\;\\ a\cdot b =(2+\sqrt3)(2-\sqrt3) =2^2+(\sqrt3)^2 =4-3=1 \\\;\\ (a+b)^2-(a-b)^2 = (a+b-a+b)(a+b+a-b)=2b\cdot2a = \\\;\\= 4\cdot ab =4\cdot1=4[/tex]