Răspuns :
[tex]2^{1999} =8=\ \textgreater \ Ultimele 3 cifre=8,0,0[/tex]Sper că ți-a fost de folos.
[tex]2^{2001}(2^5-2^3+1)=2^{2001}\cdot 25=2^{1999}\cdot2^2\cdot5^2=2^{1999}\cdot 100\\
uc2^1=2\\
uc2^2=4\\
uc2^3=8\\uc2^4=6\\ 1999=4\cdot499+3\\
uc2^{1999}=uc2^3=8\\
u_3c(n)=800[/tex]