[tex]\displaystyle\\
\left(\frac{7}{4} + \frac{7}{8} + \frac{7}{12} +\cdots + \frac{7}{100}\right): \left(\frac{1}{4} + \frac{1}{8} + \frac{1}{12} +\cdots + \frac{1}{100}\right) =\\\\\\
= \frac{\dfrac{7}{4} + \dfrac{7}{8} + \dfrac{7}{12} +\cdots + \dfrac{7}{100}}{\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{12} +\cdots + \dfrac{1}{100}}=
\frac{7\left(\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{12} +\cdots + \dfrac{1}{100}\right)}{\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{12} +\cdots + \dfrac{1}{100}}=\boxed{\bf 7}[/tex]