Răspuns :
formula radicalilor compusi
√(a+√b)=√[a+√(a²-b)]/2+√[a-√(a²-b)]/2
√(a-√b)=√[a+√(a²-b)]/2-√[a-√(a²-b)]/2
√(6-4√2)+√(6+4√2)=
=√(6-√32)+√(6+√32)=
=√[6+√(36-32)]/2-√[6-√(36-32)]/2+√[6+√(36-32)]/2+√[6-√(36-32)]/2
=√(6+√4)/2-√(6-√4)/2+√(6+√4)]/2+√(6-√4)/2=
=√(6+2)/2-√(6-2)/2+√(6+2)]/2+√(6-2)/2=
=√4-√2+√4+√2=
=2+2=4
sau
√(6-4√2)+√(6+4√2)=
=√(4-4√2+2)+√(4+4√2+2)=
=√(2-√2)²+√(2+√2)²=
=2-√2+√2+2=4
√(a+√b)=√[a+√(a²-b)]/2+√[a-√(a²-b)]/2
√(a-√b)=√[a+√(a²-b)]/2-√[a-√(a²-b)]/2
√(6-4√2)+√(6+4√2)=
=√(6-√32)+√(6+√32)=
=√[6+√(36-32)]/2-√[6-√(36-32)]/2+√[6+√(36-32)]/2+√[6-√(36-32)]/2
=√(6+√4)/2-√(6-√4)/2+√(6+√4)]/2+√(6-√4)/2=
=√(6+2)/2-√(6-2)/2+√(6+2)]/2+√(6-2)/2=
=√4-√2+√4+√2=
=2+2=4
sau
√(6-4√2)+√(6+4√2)=
=√(4-4√2+2)+√(4+4√2+2)=
=√(2-√2)²+√(2+√2)²=
=2-√2+√2+2=4
Avem în vedere formulele importante de la de clasa a 7-a :
a² ± 2ab +b² = (a ± b)²
√a² = |a|
Expresia de sub primul radical se transformă astfel :
6 - 4√2 = 4+2 - 4√2 = 2^2- 4√2 +(√2)² = (2 - √2)²
Expresia de sub al doilea radical se transformă astfel :
6 + 4√2 = 4+2 + 4√2 = 2^2 + 4√2 +(√2)² = (2 + √2)²
Expresia din enunț devine:
[tex] \it \sqrt{(2-\sqrt2)^2} +\sqrt{(2 + \sqrt2)^2} = |2-\sqrt2|+|2+\sqrt2| = \\\;\\ = 2-\sqrt2+2+\sqrt2 =4[/tex]
Observație:
|2 - √2| = 2 - √2 ( deoarece expresia din modul este pozitivă)