Răspuns :
AD II BC=> ADIIEB => TFA(teorema fundamentala a asemanarii) :
[tex] \frac{BF}{AF} = \frac{EB}{AD} [/tex]
[tex] \frac{BF}{BF+42}= \frac{ \frac{5AD}{7} }{AD} [/tex]
[tex] \frac{BF}{BF+42}= \frac{5}{7} [/tex]
7BF=5BF+210
2BF=210
BF=105 cm
[tex] \frac{BE}{BC}= \frac{5}{7} [/tex] => BE=5*BC/7 BC=AD => BE=5*AD/7 de aici am scris in locul lui BE in raport 5*AD/7
[tex] \frac{BF}{AF} = \frac{EB}{AD} [/tex]
[tex] \frac{BF}{BF+42}= \frac{ \frac{5AD}{7} }{AD} [/tex]
[tex] \frac{BF}{BF+42}= \frac{5}{7} [/tex]
7BF=5BF+210
2BF=210
BF=105 cm
[tex] \frac{BE}{BC}= \frac{5}{7} [/tex] => BE=5*BC/7 BC=AD => BE=5*AD/7 de aici am scris in locul lui BE in raport 5*AD/7
AB II DC
AD II BC
AB=DC = 42 cm
BC = 5 /7
E ∈ BC
F ∈AB
din toate astea rezulta cf. T . THALES ⇒ AF/BF = CE / BE ⇔BF /BF+AF = 5/7⇔BF/42 =5/7 ⇒BF =42 X 5/7⇒BF=30 cm
AD II BC
AB=DC = 42 cm
BC = 5 /7
E ∈ BC
F ∈AB
din toate astea rezulta cf. T . THALES ⇒ AF/BF = CE / BE ⇔BF /BF+AF = 5/7⇔BF/42 =5/7 ⇒BF =42 X 5/7⇒BF=30 cm