Răspuns :
[tex] a_{1} [/tex]=2
[tex]a_{2} [/tex]=3
[tex]a_{3} [/tex]=4
[tex] a_{4} [/tex]=5
S=[tex] \frac{ {n} ( a_{n}+ a_{1} ) }{2} = \frac{ {n} ( a_{4}+ a_{1} ) }{2} =\frac{ 4 ( 5+2) }{2} =\frac{ {4} x7 }{2} = \frac{28}{2} =14[/tex]
[tex]r= a_{n} - a_{n-1} =5-4=1[/tex]
r=1
[tex]a_{2} [/tex]=3
[tex]a_{3} [/tex]=4
[tex] a_{4} [/tex]=5
S=[tex] \frac{ {n} ( a_{n}+ a_{1} ) }{2} = \frac{ {n} ( a_{4}+ a_{1} ) }{2} =\frac{ 4 ( 5+2) }{2} =\frac{ {4} x7 }{2} = \frac{28}{2} =14[/tex]
[tex]r= a_{n} - a_{n-1} =5-4=1[/tex]
r=1