[tex]I_n= \int\limits^1_0 {x^ne^x} \, dx =e-nI_{n-1}\\
I_n+nI_{n-1}=e\\
I_{n+1}-I_{n}= \int\limits^1_0 {x^n(x-1)e^x} \, dx \leq 0=\ \textgreater \ I_n\ descrescator\\
I_n \leq I_{n-1}\\
nI_{n-1} \leq n I_{n-1}\\
Adunam \ inegalitatile\\
e\leq (n-1)I_{n-1}=\ \textgreater \ I_{n-1} \geq \frac{e}{n+1} =\ \textgreater \ I_n \geq \frac{e}{n+2} \\
Analog\\
nI_n \leq nI_{n-1}\\
I_n \leq I_n\\
(n+1)I_n \leq e=\ \textgreater \ I_n \leq \frac{e}{n+1} \\
Concluzie\\
\frac{e}{n+2} \leq I_n \leq \frac{e}{n+1} |\cdot n\\
\frac{en}{n+2} \leq nI_n \leq \frac{en}{n+1}=\ \textgreater \ nI_n-\ \textgreater \ e
[/tex]