Răspuns :
[tex]Se~da:\\ \\
m=10kg\\ \\
t_{0}=80^\circ C\\ \\
Q_{1}=Q_{2}\\ \\
m1;m2=?kg\\ \\ \\[/tex]
[tex]Formule:\\ \\ m=m_{1}+m_{2}\Rightarrow m_{2}=m-m_{1}\\ \\ \\ Q_{1}=c\times m_{1}\times \Delta t+\lambda_{t}\times m_{1}\\ \\ Q_{1}=m_{1}\times[c\times(t_{t}-t_{0})+\lambda_{t}]\\ \\ \\ Q_{2}=c\times m_{2} \times \Delta t\\ \\ Q_{2}=c \times m_{2} \times (t_{f}-t_{0})\\ \\ \\ m_{1}\times[c\times(t_{t}-t_{0})+\lambda_{t}]=c \times m_{2} \times (t_{f}-t_{0})\\ \\ m_{2}=\frac{m_{1}\times[c\times(t_{t}-t_{0})+\lambda_{t}]}{c \times (t_{f}-t_{0})}\\ \\[/tex]
[tex]m-m_{1}=\frac{m_{1}\times[c\times(t_{t}-t_{0})+\lambda_{t}]}{c \times (t_{f}-t_{0})}\\ \\ \frac m{m_{1}}-1=\frac{c\times(t_{t}-t_{0})+\lambda_{t}}{c \times (t_{f}-t_{0})}\\ \\ \frac m{m_{1}}=\frac{c\times(t_{t}-t_{0})+\lambda_{t}}{c \times (t_{f}-t_{0})}+1\\ \\ \frac m{m_{1}}=\frac{c\times(t_{t}-t_{0})+\lambda_{t}+c \times (t_{f}-t_{0})}{c \times (t_{f}-t_{0})}\\ \\ m_{1}=\frac{m \times c \times (t_{f}-t_{0})}{c\times(t_{t}-t_{0})+\lambda_{t}+c \times (t_{f}-t_{0})}\\ \\[/tex]
[tex]m_{1}=\frac{m \times c \times (t_{f}-t_{0})}{c \times (t_{t}+t_{f}-2\times t_{0})+\lambda_{t}}\\ \\ m_{2}=m-m_{1}\\ \\ \\ Calcule:\\ \\ m_{1}=\frac{10 \times 4180 \times (100-80)}{4180 \times (0+100-2\times 80)+335000}\approx 9,93kg\\ \\ m_{2}=10-9,93=0,07kg[/tex]
[tex]Formule:\\ \\ m=m_{1}+m_{2}\Rightarrow m_{2}=m-m_{1}\\ \\ \\ Q_{1}=c\times m_{1}\times \Delta t+\lambda_{t}\times m_{1}\\ \\ Q_{1}=m_{1}\times[c\times(t_{t}-t_{0})+\lambda_{t}]\\ \\ \\ Q_{2}=c\times m_{2} \times \Delta t\\ \\ Q_{2}=c \times m_{2} \times (t_{f}-t_{0})\\ \\ \\ m_{1}\times[c\times(t_{t}-t_{0})+\lambda_{t}]=c \times m_{2} \times (t_{f}-t_{0})\\ \\ m_{2}=\frac{m_{1}\times[c\times(t_{t}-t_{0})+\lambda_{t}]}{c \times (t_{f}-t_{0})}\\ \\[/tex]
[tex]m-m_{1}=\frac{m_{1}\times[c\times(t_{t}-t_{0})+\lambda_{t}]}{c \times (t_{f}-t_{0})}\\ \\ \frac m{m_{1}}-1=\frac{c\times(t_{t}-t_{0})+\lambda_{t}}{c \times (t_{f}-t_{0})}\\ \\ \frac m{m_{1}}=\frac{c\times(t_{t}-t_{0})+\lambda_{t}}{c \times (t_{f}-t_{0})}+1\\ \\ \frac m{m_{1}}=\frac{c\times(t_{t}-t_{0})+\lambda_{t}+c \times (t_{f}-t_{0})}{c \times (t_{f}-t_{0})}\\ \\ m_{1}=\frac{m \times c \times (t_{f}-t_{0})}{c\times(t_{t}-t_{0})+\lambda_{t}+c \times (t_{f}-t_{0})}\\ \\[/tex]
[tex]m_{1}=\frac{m \times c \times (t_{f}-t_{0})}{c \times (t_{t}+t_{f}-2\times t_{0})+\lambda_{t}}\\ \\ m_{2}=m-m_{1}\\ \\ \\ Calcule:\\ \\ m_{1}=\frac{10 \times 4180 \times (100-80)}{4180 \times (0+100-2\times 80)+335000}\approx 9,93kg\\ \\ m_{2}=10-9,93=0,07kg[/tex]