👤

Vă rog frumos sa mă ajutați cu aceasta tema !!!
Urgent
Promit ca va dau coroana


Vă Rog Frumos Sa Mă Ajutați Cu Aceasta Tema Urgent Promit Ca Va Dau Coroana class=
Vă Rog Frumos Sa Mă Ajutați Cu Aceasta Tema Urgent Promit Ca Va Dau Coroana class=

Răspuns :

vezi atasament , de ce nu ma lasa doar sa atasez?
Vezi imaginea Laurafofiu
Vezi imaginea Laurafofiu
Vezi imaginea Laurafofiu
Vezi imaginea Laurafofiu
Vezi imaginea Laurafofiu
[tex]\displaystyle \mathtt{a)~f(x)=2x^2+5x}\\ \\ \mathtt{f'(x)=\left(2x^2+5x\right)'=\left(2x^2\right)'+(5x)'=2\left(x^2\right)'+5x'=2 \cdot 2x+5\cdot 1=}\\ \\ \mathtt{=4x+5}\\ \\ \mathtt{f''(x)=(f'(x))'=(4x+5)'=(4x)'+5'=4x'+0=4 \cdot 1=4}[/tex]

[tex]\displaystyle \mathtt{b)~f(x)=x^3-4x}\\ \\ \mathtt{f'(x)=\left(x^3-4x\right)'=\left(x^3\right)'-(4x)'=3x^2-4x'=3x^2-4\cdot1=3x^2-4}\\ \\ \mathtt{f''(x)=(f'(x))'=\left(3x^2-4\right)'=\left(3x^2\right)'-4'=3\left(x^2\right)'-0=3 \cdot 2x=6x}[/tex]

[tex]\displaystyle \mathtt{c)~f(x)=e^x+x}\\ \\ \mathtt{f'(x)=\left(e^x+x\right)'=\left(e^x\right)'+x'=e^x+1}\\ \\ \mathtt{f''(x)=(f'(x))'=\left(e^x+1\right)'=\left(e^x)'+1'=e^x+0=e^xx}[/tex]

[tex]\displaystyle \mathtt{d)~f(x)=x+ln~x}\\ \\ \mathtt{f'(x)=(x+ln~x)'=x'+(ln~x)'=1+ \frac{1}{x}}\\ \\ \mathtt{f''(x)=\left(1+ \frac{1}{x}\right)'=1'+\left( \frac{1}{x}\right)'=0+\left(x^{-1}\right)'=(-1)\cdot x^{-1-1}=}\\ \\ \mathtt{=-x^{-2}=- \frac{1}{x^2} }[/tex]

[tex]\displaystyle \mathtt{e)~f(x)=xln~x}\\ \\ \mathtt{f'(x)=(xln~x)'=x' \cdot ln~x+x \cdot(ln~x)'=1 \cdot ln~x+x \cdot \frac{1}{x}=ln~x+1 }\\ \\ \mathtt{f''(x)=(f'(x))'=(ln~x+1)'=(ln~x)'+1'= \frac{1}{x}+0= \frac{1}{x} }[/tex]

[tex]\displaystyle \mathtt{f)~f(x)=x^2e^x}\\ \\ \mathtt{f'(x)=\left(x^2e^x\right)'=\left(x^2\right)'\cdot e^x+x^2 \cdot \left(e^x\right)'=2xe^x+x^2e^x}\\\\\mathtt{f''(x)=(f'(x))'=\left(2xe^x+x^2e^x\right)'=\left(2xe^x\right)'+\left(x^2e^x\right)'=}\\ \\ \mathtt{=2\left(xe^x\right)'+\left(x^2e^x\right)'=2\left(x' \cdot e^x+x \cdot \left(e^x\right)'\right)+\left(x^2\right)'\cdot e^x+x^2\cdot\left(e^x\right)'=}[/tex]

[tex]\displaystyle \mathtt{=2\left(1 \cdot e^x+x e^x\right)+2xe^x+x^2e^x=2\left(e^x+xe^x\right)+2xe^x+x^2e^x=}\\ \\ \mathtt{=2e^x+2xe^x+2xe^x+x^2e^x=2e^x+4xe^x+x^2e^x} [/tex]

[tex]\displaystyle \mathtt{g)~f(x)=x^2ln~x}\\ \\ \mathtt{f'(x)=\left(x^2ln~x\right)'=\left(x^2\right)' \cdot ln~x+x^2 \cdot (ln~x)'=2xln~x+x^2 \cdot \frac{1}{x}= }\\ \\ \mathtt{=2xln~x+x}\\ \\ \mathtt{f''(x)=(f'(x))'=(2xln~x+x)'=(2xln~x)'+x'=}\\ \\ \mathtt{=(2x)'\cdot ln~x+2x \cdot (ln~x)'+1=2x' \cdot ln~x+2x \cdot \frac{1}{x}+1= }\\ \\ \mathtt{=2 \cdot 1 \cdot ln~x+2+1=2ln~x+3}[/tex]

[tex]\displaystyle \mathtt{h)~f(x)=sin^2x}\\ \\ \mathtt{f'(x)=\left(sin^2x\right)'=(sin~x\cdot sin~x)'=(sin~x)' \cdot sin~x+sin~x\cdot(sin~x)'}\\ \\ \mathtt{=cos~x \cdot sin~x+sin~x \cdot cos~x=2cos~x \cdot sin~x}\\ \\ \mathtt{f''(x)=(f'(x))'=(2cos~x \cdot sin~x)'=2(cos~x \cdot sin~x)'=}\\ \\ \mathtt{=2((cos~x)' \cdot sin~x+cos~x \cdot(sin~x)')=}\\ \\ \mathtt{=2(-sin~x\cdot sin~x+cos~x \cdot cos~x)=2(-sin^2x+cos^2x)=}\\ \\ \mathtt{=-2sin^2x+2cos^2x}[/tex]

[tex]\displaystyle \mathtt{i)~f(x)=cos^3x}\\ \\ \mathtt{f'(x)=\left(cos^3x\right)'=\left(cos^2x\cdot cos~x\right)'=}\\ \\ \mathtt{=\left(cos^2x\right)' \cdot cos~x+cos^2x \cdot (cos~x)'=}\\ \\ \mathtt{=(cos~x\cdot cos~x)'\cdot cos~x+cos^2x \cdot(-sin~x)=}\\ \\ \mathtt{=((cos~x)'\cdot cos~x+cos~x \cdot (cos~x)')\cdot cos~x-cos^2x\cdot sin~x=}[/tex]

[tex]\displaystyle \mathtt{=(-sin~x \cdot cos~x+cos~x\cdot(-sin~x))\cdot cos~x-cos^2x \cdot sin~x=} \\ \\ \mathtt{=(-2sin~x \cdot cos~x)\cdot cos~x-cos^2x \cdot sin~x=}\\ \\ \mathtt{=-2cos^2x\cdot sin~x-cos^2x \cdot sin~x=-3cos^2x \cdot sin~x}[/tex]

[tex]\displaystyle \mathtt{f''(x)=(f'(x))'=\left(-3cos^2x \cdot sin~x\right)'=-3\left(cos^2x \cdot sin~x\right)'=}\\ \\ \mathtt{=-3\left(\left(cos^2x\right)'\cdot sin~x+cos^2x \cdot (sin~x)'\right)=}\\ \\ \mathtt{-3\left((-2sin~x\cdot cos~x)\cdot sin~x+cos^2x \cdot cos~x\right)=}\\ \\ \mathtt{=-3\left(-2sin^2x\cdot cos~x+cos^3x\right)=6sin^2x \cdot cos~x-3cos^3x}[/tex]

[tex]\displaystyle \mathtt{j)~f(x)=xsin~x+cos~x}\\ \\ \mathtt{f'(x)=(xsin~x+cos~x)'=(xsin~x)'+(cos~x)'=}\\ \\ \mathtt{x'\cdot sin~x+x \cdot (sin~x)'+(-sin~x)=1 \cdot sin~x+x \cdot cos~x-sin~x=}\\ \\ \mathtt{=sin~x+xcos~x-sin~x=xcos~x}\\ \\ \mathtt{f''(x)=(f'(x))'=(xcos~x)'=x' \cdot cos~x+x \cdot (cos~x)'=}\\ \\ \mathtt{=1 \cdot cos~x+x \cdot (-sin~x)=cos~x-xsin~x}[/tex]

[tex]\displaystyle \mathtt{k)~f(x)=x^2 \sqrt{x} ,~x\ \textgreater \ 0}\\ \\ \mathtt{f'(x)=\left(x^2} \sqrt{x} \right)'=\left(x^2\right)'\cdot \sqrt{x} +x^2 \cdot \left( \sqrt{x} \right)'=2x \sqrt{x} +x^2\cdot \frac{1}{2 \sqrt{x} }=} \\ \\ \mathtt{=2x \sqrt{x} + \frac{x^2}{2 \sqrt{x} } = \frac{4x^2+x^2}{2 \sqrt{x} } = \frac{5x^2}{2 \sqrt{x} } }[/tex]

[tex]\displaystyle \mathtt{f''(x)=(f'(x))'=\left( \frac{5x^2}{2 \sqrt{x} } \right)'= \frac{\left(5x^2\right)' \cdot 2 \sqrt{x} -5x^2\cdot \left(2 \sqrt{x} \right)'}{\left(2} \sqrt{x} \right)^2 }=}\\ \\ \mathtt{= \frac{5\left(x^2\right)'\cdot 2 \sqrt{x} -5x^2\cdot 2\left( \sqrt{x} \right)'}{4x}= \frac{5 \cdot 2x \cdot 2 \sqrt{x} -5x^2 \cdot 2 \cdot \frac{1}{2 \sqrt{x} } }{4x}=}[/tex]

[tex]\displaystyle \mathtt{=\frac{20x \sqrt{x}- \frac{5x^2}{ \sqrt{x} }}{4x}= \frac{ \frac{20x^2-5x^2}{\sqrt{x}}}{4x}= \frac{\frac{15x^2}{\sqrt{x}}}{4x}= \frac{15x^2 \sqrt{x} }{x} \cdot \frac{1}{4x}= \frac{15x^2 \sqrt{x} }{4x^2}= \frac{15 \sqrt{x} }{4} }[/tex]
Vezi imaginea Аноним
Vezi imaginea Аноним