Răspuns :
c)√2x+√2-x=2-√2
√2[x+(1-x)]=√2²-√2
√2[x+(1-x)]=√2(√2-1) |:√2
x+(1-x)=√2-1
x+1-x=√2-1
1=√2-1 , ceea ce este fals ⇒x∉R
√2[x+(1-x)]=√2²-√2
√2[x+(1-x)]=√2(√2-1) |:√2
x+(1-x)=√2-1
x+1-x=√2-1
1=√2-1 , ceea ce este fals ⇒x∉R
√2x-x=2-√2-√2
x(√2-1)=2-2√2
x(√2-1)=2(1-√2)
x(√2-1)=-2(√2-1)
x=-2(√2-1)/(√2-1)
x=-2
x(√2-1)=2-2√2
x(√2-1)=2(1-√2)
x(√2-1)=-2(√2-1)
x=-2(√2-1)/(√2-1)
x=-2