Răspuns :
ABCD trapez isos⇒AD=BC
∡D=∡C=60° ⇒ΔAED≡ΔBFC⇒DE=FC
AE⊥DC; BF⊥DC⇒AE=BF
AB=4cm
DC=8cm ⇒DE=FC=(DC-AB)/2=(8-4)/2
=2cm
ΔBFC dr.
m(∡F)=90°
FC=2cm
∡C=60° ⇒∡B=30°⇒sin B=1/2=FC/BC
⇒BC=2 × 2=4cm
AD=4cm
AB=4cm
DC=8cm ⇒Ptrapez=4+4+4+8=20cm
7)ABCD dreptunghi
AC∩BD=O ⇒ΔBOC
∡O=60°
AC=BD⇒BO=BC ⇒ ΔBOC echilateral
BO=OC=BC
EC=3cm
BE⊥OC⇒E∈OC
⇒BE este inaltime si mediatoare⇒EC=3cm
OC=6cm⇒BC=6cm
b)AB=12cm
BC=6cm ⇒A dreptunghi=AB × AC=12 × 6=72 cm²
a)ABCD trapez isos⇒∡D≡∡C=120°
AD=BC=5cm
DF⊥AB
CE⊥AB ⇒DF=CE
DCFE dreptunghi⇒DC=FE=6cm
∡D=∡C=90°
m(∡ADC)=120° ⇒
⇒∡ ADF=120°-90°
=30°⇒AF=AD/2
AF=5/2=2,5 cm
AE=FE+AF=6+2,5=8,5cm
b)P trapez=AD+BC+DC+AB
=5+5+6+(6+2,5 × 2)
=16+11=27 cm
9)ABCD trapez isos.
DC=12 cm
AB=2,25 × CD
=2,25 × 12
=27 cm
ΔAFD
ΔCEB
AD=BC ⇒ΔAFD≡ΔCEB⇒AF=BE=(27-12)/2
∡A≡∡B =15/2
=7,5 cm
ΔCEB
m(∡E)=90°
m(∡B)=45° ⇒ΔCEB dr.isoscel⇒CE=EB
EB=AB=7,5 cm
b)A trapez=(DC+AB)/2 ×7,5
=(12+27)/ 2 × 7,5
=39/2 × 7,5
=19,5 × 7,5
=146,25 cm²
∡D=∡C=60° ⇒ΔAED≡ΔBFC⇒DE=FC
AE⊥DC; BF⊥DC⇒AE=BF
AB=4cm
DC=8cm ⇒DE=FC=(DC-AB)/2=(8-4)/2
=2cm
ΔBFC dr.
m(∡F)=90°
FC=2cm
∡C=60° ⇒∡B=30°⇒sin B=1/2=FC/BC
⇒BC=2 × 2=4cm
AD=4cm
AB=4cm
DC=8cm ⇒Ptrapez=4+4+4+8=20cm
7)ABCD dreptunghi
AC∩BD=O ⇒ΔBOC
∡O=60°
AC=BD⇒BO=BC ⇒ ΔBOC echilateral
BO=OC=BC
EC=3cm
BE⊥OC⇒E∈OC
⇒BE este inaltime si mediatoare⇒EC=3cm
OC=6cm⇒BC=6cm
b)AB=12cm
BC=6cm ⇒A dreptunghi=AB × AC=12 × 6=72 cm²
a)ABCD trapez isos⇒∡D≡∡C=120°
AD=BC=5cm
DF⊥AB
CE⊥AB ⇒DF=CE
DCFE dreptunghi⇒DC=FE=6cm
∡D=∡C=90°
m(∡ADC)=120° ⇒
⇒∡ ADF=120°-90°
=30°⇒AF=AD/2
AF=5/2=2,5 cm
AE=FE+AF=6+2,5=8,5cm
b)P trapez=AD+BC+DC+AB
=5+5+6+(6+2,5 × 2)
=16+11=27 cm
9)ABCD trapez isos.
DC=12 cm
AB=2,25 × CD
=2,25 × 12
=27 cm
ΔAFD
ΔCEB
AD=BC ⇒ΔAFD≡ΔCEB⇒AF=BE=(27-12)/2
∡A≡∡B =15/2
=7,5 cm
ΔCEB
m(∡E)=90°
m(∡B)=45° ⇒ΔCEB dr.isoscel⇒CE=EB
EB=AB=7,5 cm
b)A trapez=(DC+AB)/2 ×7,5
=(12+27)/ 2 × 7,5
=39/2 × 7,5
=19,5 × 7,5
=146,25 cm²