Răspuns :
x ∈ [-1; +infinit)
[tex]log_2 (x+1) - log_2 (x+3) = -1[/tex]
[tex]log_2 (x+1) - log_2 (x+3) = -log_2 2[/tex]
[tex]log_2 (x+1) + log_2 2 = log_2 (x+3)[/tex]
[tex]log_2 (2(x+1)) = log_2 (x+3)[/tex]
2(x+1)=x+3
2x+2=x+3
x = 1
[tex]log_2 (x+1) - log_2 (x+3) = -1[/tex]
[tex]log_2 (x+1) - log_2 (x+3) = -log_2 2[/tex]
[tex]log_2 (x+1) + log_2 2 = log_2 (x+3)[/tex]
[tex]log_2 (2(x+1)) = log_2 (x+3)[/tex]
2(x+1)=x+3
2x+2=x+3
x = 1
vezi rezolvare
amconsiderat cunoscuta relatia logadin b-logbaza adin c= logbaz a din (b/c)
amconsiderat cunoscuta relatia logadin b-logbaza adin c= logbaz a din (b/c)