fie Q=AB∩CD
atunci AQ=25-7=18
ΔACD siΔADB dreptunghice pt ca AB e diametru
CQ=DQ= teorema inaltimii=√(25+7)(25-7)=√(625-49)=√576=24
ΔACD =ΔADB (cateta cateta, ptv caA aiB ∈ mediatoarei CD ( diametrul AB⊥coarda CD)
Arie ADBC=AD*CQ/2+AD*DQ/2= AB*CD/2=50*46/2=1150cm²
AQ=25-7=18
CQ=24 ⇒Pitagora AC=AD=30=(√(18²+24²)
BQ=25+7=32
CQ=24⇒(pitagora) BC=BD= 40 =(√32²+24²)
Perimetrul= 2*30+2*40=140cm