Se foloseste formula radicalilor compusi:
[tex] \sqrt{7-4\sqrt3}=\sqrt{7-\sqrt{4^2*3}}= \sqrt{7-\sqrt{48}} \\ \\
C= \sqrt{7^2-48}=\sqrt{1}=1 \\ \\
\sqrt{7-4\sqrt3}= \sqrt{ \frac{7+1}{2}}- \sqrt{ \frac{7-1}{2}}= \sqrt{4}- \sqrt{3} =2- \sqrt{3}[tex] (2- \sqrt{3}+ 2+\sqrt{3}):2=4:2=2 [/tex][/tex]
[tex] \sqrt{7+4\sqrt3}=\sqrt{7+\sqrt{4^2*3}}= \sqrt{7+\sqrt{48}} \\ \\ C= \sqrt{7^2-48}=\sqrt{1}=1 \\ \\ \sqrt{7+4\sqrt3}= \sqrt{ \frac{7+1}{2}}+ \sqrt{ \frac{7-1}{2}}= \sqrt{4}+ \sqrt{3} = 2+\sqrt{3}[/tex]
Media aritmetica a celor doi radicali mari este suma radicalilor supra 2= (2-√3+2+√3):2=4:2=2