[tex]\mathtt{a)1,6\cdot1,6^2\cdot1,6^3\cdot...\cdot1,6^{100}=1,6^{1+2+3+...+100}+1,6^{\frac{100(100+1)}{2}}=1,6^{5050}}[/tex]
[tex]\mathtt{b)2,25^5\cdot 2,25^{10}\cdot 2,25^{15}\cdot...\cdot 2,25^{50}=2,25^{5+10+15+...+50}=} \\ \\ \mathtt{=2,25^{5(1+2+3+...+10)}=2,25^{5\cdot\frac{10(10+1)}{2}}=2,25^{55\cdot5}=2,25^{275}}[/tex]