Răspuns :
1. a) (x+4)^2+(x−2)(x+2)−(x−4)^2=x^2+8x+16+(x)(x)+(x)(2)+(−2)(x)+(−2)(2)+−x2+8x+−16=x^2+8x+16+x^2+2x+−2x+−4+−x^2+8x+−16
b) (√3−√2+1)^2−(√3−√2)^2+(√3−√2)(√3+√2)=0.386881
c) (3^2−1)(3^2+1)(9^2+1)(81^2+1)−81^4=(9−1)(3^2+1)(9^2+1)(81^2+1)−81^4=8(3^2+1)(9^2+1)(81^2+1)−81^4=8(9+1)(9^2+1)(81^2+1)−81^4=(8)(10)(9^2+1)(81^2+1)−81^4=80(9^2+1)(81^2+1)−81^4=80(81+1)(81^2+1)−81^4=(80)(82)(81^2+1)−81^4=6560(81^2+1)−81^4=6560(6561+1)−81^4=(6560)(6562)−81^4=43046720−81^4=43046720−43046721=−1
d)√(2√3−√2)^2−√7−2√10+√8+2√15=NaN
2. (x−y+z)^2+(x+y−z)^2+(−x+y+z)^2=x^2+−2xy+2xz+y^2+−2yz+z^2+x^2+2xy+−2xz+y^2+−2yz+z^2+x^2+−2xy+−2xz+y^2+2yz+z^2=(x^2+x^2+x^2)+(2xy+−2xy+−2xy)+(2xz+−2xz+−2xz)+(y^2+y^2+y^2)+(−2yz+−2yz+2yz)+(z^2+z^2+z^2)=3x^2+−2xy+−2xz+3y^2+−2yz+3z^2
3. a) x^3−6x^2+9x=x(x−3)(x−3)
b) x^2−4y^2+4y−1=x^2−4y^2+4y−1
c)x^3−5x^2−3x+15=(x−5)(x^2−3)
d)(x^2+6x)(x^2+6x+10)+25=(x^2)(x^2)+(x^2)(6x)+(x^2)(10)+(6x)(x^2)+(6x)(6x)+(6x)(10)+25=x^4+6x^3+10x^2+6x^3+36x^2+60x+25
b) (√3−√2+1)^2−(√3−√2)^2+(√3−√2)(√3+√2)=0.386881
c) (3^2−1)(3^2+1)(9^2+1)(81^2+1)−81^4=(9−1)(3^2+1)(9^2+1)(81^2+1)−81^4=8(3^2+1)(9^2+1)(81^2+1)−81^4=8(9+1)(9^2+1)(81^2+1)−81^4=(8)(10)(9^2+1)(81^2+1)−81^4=80(9^2+1)(81^2+1)−81^4=80(81+1)(81^2+1)−81^4=(80)(82)(81^2+1)−81^4=6560(81^2+1)−81^4=6560(6561+1)−81^4=(6560)(6562)−81^4=43046720−81^4=43046720−43046721=−1
d)√(2√3−√2)^2−√7−2√10+√8+2√15=NaN
2. (x−y+z)^2+(x+y−z)^2+(−x+y+z)^2=x^2+−2xy+2xz+y^2+−2yz+z^2+x^2+2xy+−2xz+y^2+−2yz+z^2+x^2+−2xy+−2xz+y^2+2yz+z^2=(x^2+x^2+x^2)+(2xy+−2xy+−2xy)+(2xz+−2xz+−2xz)+(y^2+y^2+y^2)+(−2yz+−2yz+2yz)+(z^2+z^2+z^2)=3x^2+−2xy+−2xz+3y^2+−2yz+3z^2
3. a) x^3−6x^2+9x=x(x−3)(x−3)
b) x^2−4y^2+4y−1=x^2−4y^2+4y−1
c)x^3−5x^2−3x+15=(x−5)(x^2−3)
d)(x^2+6x)(x^2+6x+10)+25=(x^2)(x^2)+(x^2)(6x)+(x^2)(10)+(6x)(x^2)+(6x)(6x)+(6x)(10)+25=x^4+6x^3+10x^2+6x^3+36x^2+60x+25