Răspuns :
[tex]Daca~n=2k~atunci~13^n=13^{2k}=0^2+(13^k)^2\\
Daca~n=2k+1~atunci~13^n=13^{2k+1}=13\cdot13^{2k}=\\
=(2^2+3^2)\cdot(13^k)^2=(2\cdot13^k)^2+(3\cdot13^k)^2[/tex]
I) n = par ⇒ n = 2k, k∈ℕ
(5, 12, 13) - triplet pitagoreic ⇔ 13² = 5² + 12²
[tex]\it 13^n = 13^{2k} = 13^2\cdot13^{2k-2}= (5^2+12^2)(13^{k-1})^2= \\\;\\ (5\cdot13^{k-1})^2+(12\cdot13^{k-1})^2[/tex]
II) n=impar ⇒ n = 2k+1, k∈ℕ
13 = 4 + 9 = 2² + 3²
[tex]\it 13^n=13^{2k+1} = 13\cdot13^{2k} = (2^2+3^2)(13^k)^2 = \\\;\\ =(2\cdot13^k)^2 + (3\cdot13^k)^2[/tex]