Răspuns :
Progresie geometrica, ratia q=2, primul termen 2
¨0, ultimul 2^1997, cu 1998 de termeni
a= 1x(2^1998 -1):(2-1) = 2^1998 -1
b= ((2^6))^333 - 1= 2^1998 - 1
---------------------------------------------
a-b=2^1998 -1 -2^1998 + 1 = 0.
---------------------------------------------
Succes in continuare!
¨0, ultimul 2^1997, cu 1998 de termeni
a= 1x(2^1998 -1):(2-1) = 2^1998 -1
b= ((2^6))^333 - 1= 2^1998 - 1
---------------------------------------------
a-b=2^1998 -1 -2^1998 + 1 = 0.
---------------------------------------------
Succes in continuare!
a = 2⁰ + 2¹ + 2² + 2³ + ......... + 2 ¹⁹⁹⁷ ;
b = 64³³³ - 1
_____________________________
a - b = ?
a = 2⁰ + 2¹ + 2² + 2³ + ......... + 2 ¹⁹⁹⁷ I (·2)
2a = 2¹ + 2² + 2³ + 2⁴ + ......... + 2 ¹⁹⁹⁷+ 2¹⁹⁹⁸
-------------------------------------------------------------------
2a- a = 2¹ + 2² + 2³ + 2⁴ + ......... + 2 ¹⁹⁹⁷+ 2¹⁹⁹⁸ -
2⁰ - 2¹ - 2² - 2³ - ......... - 2 ¹⁹⁹⁷
-------------------------------------------------------------------
a = 2¹⁹⁹⁸ - 2⁰
a = 2¹⁹⁹⁸ - 1
a - b= ?
2¹⁹⁹⁸ - 1 - (64³³³ - 1)=
2 ¹⁹⁹⁸ - 1 - [(2⁶)³³³ - 1]=
2¹⁹⁹⁸ - 1- ( 2¹⁹⁹⁸ - 1)=
2¹⁹⁹⁸ - 1 - 2¹⁹⁹⁸ + 1=
2¹⁹⁹⁸ - 2¹⁹⁹⁸ =
0
b = 64³³³ - 1
_____________________________
a - b = ?
a = 2⁰ + 2¹ + 2² + 2³ + ......... + 2 ¹⁹⁹⁷ I (·2)
2a = 2¹ + 2² + 2³ + 2⁴ + ......... + 2 ¹⁹⁹⁷+ 2¹⁹⁹⁸
-------------------------------------------------------------------
2a- a = 2¹ + 2² + 2³ + 2⁴ + ......... + 2 ¹⁹⁹⁷+ 2¹⁹⁹⁸ -
2⁰ - 2¹ - 2² - 2³ - ......... - 2 ¹⁹⁹⁷
-------------------------------------------------------------------
a = 2¹⁹⁹⁸ - 2⁰
a = 2¹⁹⁹⁸ - 1
a - b= ?
2¹⁹⁹⁸ - 1 - (64³³³ - 1)=
2 ¹⁹⁹⁸ - 1 - [(2⁶)³³³ - 1]=
2¹⁹⁹⁸ - 1- ( 2¹⁹⁹⁸ - 1)=
2¹⁹⁹⁸ - 1 - 2¹⁹⁹⁸ + 1=
2¹⁹⁹⁸ - 2¹⁹⁹⁸ =
0