a)
(6x8+20)/(2x8+1)=
=68/17=4 intregi
b)
n=N-{1,2,3,...,8}, adica n>8
n>8 l x2
2n>16 l +1
2n+1>17 l inversam
1/(2n+1)<1/17 l x17
17/(2n+1)<1
(6n+20)/(2n+1)=(6n+3+17)/(2n+1)=(6n+3)/(2n+1)+17/(2n+1)=
=6(2n+1)/(2n+1)+17/(2n+1)=6+17/(2n+1)
Partea intreaga este 6 si partea fractionara 17/(2n+1)<1 (am demonstrat)