👤
a fost răspuns

Sa se arate ca:
a)modul de sin x+cos x <= rad2 , x apartine R
b) modul de a*sinx+b*cos x <= rad din a patrat+b patrat
(inegalitatea Caucy Schwartz)


Răspuns :


[tex]\it sin(x+\dfrac{\pi}{4}) = \sin x \cos \dfrac{\pi}{4} +sin\dfrac{\pi}{4} \cos x =\dfrac{\sqrt2}{2}(\sin x+\cos x) \Longrightarrow \\\;\\ \\\;\\ \Longrightarrow sinx+cosx = \sqrt2sin(x+\dfrac{\pi}{4}) \Longrightarrow |sinx+cosx| = \sqrt2|sin(x+\dfrac{\pi}{4}) | \\\;\\ \\\;\\ Dar,\ |sin(x+\dfrac{\pi}{4}) | \leq 1 \\\;\\ \\\;\\ Deci,\ \ |\sin x+\cos x| \leq \sqrt2[/tex]