[tex]n=111..1+222..2+333...3+...+99...9, \underbrace{AA...A}\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~de\ 2015\ ori\\
n=11..1+2\cdot11..1+3\cdot 11..1+....+9\cdot 11..1\\
n=11..1(1+2+....+9)\\
n=\frac{10^{2016}-1}{9}\cdot\frac{9\cdot 10}{2}\\
n=5\cdot(10^{2016}-1)\\
n=5\cdot \underbrace{99...99}\\
~~~~~~~~~de\ 2015\ ori\\
n=49999....95,unde\ cifra\ 9\ apare\ de\ 2014\ ori.\\
R:2014 ori
[/tex]