E(x) = 3/4x²-9 - x+1/2x+3 - x/3-2x =
=3/[(2x-3)(2x+3)] -(x+1)/(2x+3) +x/(2x-3)
a)
E(x) nu este definita cand numitorul este zero:
2x-3=0, x=3/2
2x+3=0, x=-3/2
E(x) nu este definita cand x={-3/2;+3/2}.
b)
E(x) = 3/4x²-9 - x+1/2x+3 - x/3-2x =
=3/[(2x-3)(2x+3)] -(x+1)/(2x+3) +x/(2x-3)=
=[3-(x+1)(2x-3)+x(2x+3)]/(2x-3)(2x+3)=
=(3-2x^2 +3x-2x+3+2x^2 +3x)/(2x-3)(2x+3)=
=(4x+6)/(2x-3)(2x+3)=2(2x+3)/(2x-3)(2x+3)=
=2/(2x-3)
c)
E(x) apartine lui N, rezulta ca 2x-3 divide 2, adica:
2x-3=1 sau 2x-3=2
x=2 sau x=5/2
Doar x=2 este solutie, 5/2 nu e nr. natural