Răspuns :
1) AB= 3/9= 1/3; BC= 5; CD/DE= 15 --> CD= 15*k; DE= 1*k= k; se observa ca
(15*k) * (1/3) = 5*k --> CD * AB = BC * DE sau scris altfel: CD/BC= DE/AB, deci segmentele sunt proportionale;
2) AB= 45;
a) AM/MB= 2/7 --> AM= 2k si MB=7k; dar AB=AM+MB --> 45= 2k + 7k -->
--> 9k=45 --> k= 45:9= 5; deci AM=2*5=10 cm si MB= 7*5= 35;
b) AM/MB=5/4 --> AM= 5k si MB=4k; dar AB=AM+MB --> 45= 5k+4k -->
--> 9k= 45 --> k= 45:9=5; deci AM= 5*k= 5*5= 25 si MB= 4*k= 4*5= 20;
3) AM/MB= 3/2 --> AM= 3k si MB= 2k --> AB= AM+ MB= 3k+2k= 5k;
AN/NB= 2/3 --> AN=2p si NB= 3p --> AB= AN+NB= 2p+3p=5p
--> 5k=5p /:5 --> k= p, oricare ar fi k si p doua numere naturale;
ordinea punctelor pe axa numerelor este:
A_----------------|--------------------|------------P-----------|-------------------|--------------------B
N. M
AP/PM= (AN+NP)/PM= AN/PM + NP/PM= 2k/(k/2) + 1= 2k*(2/k) + 1= 4+1=5;
AN/NP= 2k/(k/2)= 2k * (2/k)= 4
:D
(15*k) * (1/3) = 5*k --> CD * AB = BC * DE sau scris altfel: CD/BC= DE/AB, deci segmentele sunt proportionale;
2) AB= 45;
a) AM/MB= 2/7 --> AM= 2k si MB=7k; dar AB=AM+MB --> 45= 2k + 7k -->
--> 9k=45 --> k= 45:9= 5; deci AM=2*5=10 cm si MB= 7*5= 35;
b) AM/MB=5/4 --> AM= 5k si MB=4k; dar AB=AM+MB --> 45= 5k+4k -->
--> 9k= 45 --> k= 45:9=5; deci AM= 5*k= 5*5= 25 si MB= 4*k= 4*5= 20;
3) AM/MB= 3/2 --> AM= 3k si MB= 2k --> AB= AM+ MB= 3k+2k= 5k;
AN/NB= 2/3 --> AN=2p si NB= 3p --> AB= AN+NB= 2p+3p=5p
--> 5k=5p /:5 --> k= p, oricare ar fi k si p doua numere naturale;
ordinea punctelor pe axa numerelor este:
A_----------------|--------------------|------------P-----------|-------------------|--------------------B
N. M
AP/PM= (AN+NP)/PM= AN/PM + NP/PM= 2k/(k/2) + 1= 2k*(2/k) + 1= 4+1=5;
AN/NP= 2k/(k/2)= 2k * (2/k)= 4
:D