=[tex] \lim_{x \to3\ \frac{ x^{3} -3 x^{2} -2 x^{2} +6x-3x+9}{ x^{3}-3 x^{2}- x^{2} +3x-6x+18}= \lim_x{ \to 3\ \frac{ x^{2} (x-3)-2x(x-3)-3(x-3)}{ x^{2} (x-3)-x(x-3)-6(x=3)} [/tex], dam factor pe (x-3) si simplificam cu el, obtinem [tex] \lim_{x \to3} \ \frac{ x^{2} -2x-3}{ x^{2} -x-6} = \lim_{x \to 3} \frac{(x+1)(x-3)}{(x+2)(x-3)} = \frac{3+1}{3+2}= \frac{4}{5} [/tex]