👤
a fost răspuns

Aratati ca numerele de forma 2n+5 si 7n+17 sunt prime intre ele oricare ar fi n apartine lui N.

Răspuns :

Ovdumi
pentru a demonstra ca 2n+5 si 7n+17 sunt prime intre ele trebuie sa aratam ca expresiile au un singur divizor comun egal cu 1

fie d divizorul comun, atunci avem:
1)  d|2n+5 si
2)  d|7n+17

aplicam proprietatile divizibilitatii la 1)
d|2n+5 ⇒ d|7(2n+5) ⇒ d|14n+34 +1 ⇒ d|2(7n+17) +1, cu presupunerea din 2) rezulta ca d|1 deci d=1

rationamentul a pornit de la presupunerea ca exista un divizor d comun ambelor expresii si am demonstrat ca acel divizor e 1 si implicit am demonstrat ca expresiile din enunt sunt prime intre ele