fie DE perpendicular pe AC, E pe AC.
ABC isoscel, deci inaltimea=mediana, BD=DC=BC/2=30/2=15
DE=12
in DEC dreptunghic, prin pitagora, DE=12,DC=15 => CE=9
aflam de aici cosBCA=9/15=3/5
in ADC dreptunghic, cosBCA=CD/AC=3/5=15/AC => AC=25
perimetrul=AB+AC+BC=30+25+25=30+50=80
din triunghiul ADC, prin pitagora, AD=20
aria=AD*BC/2=20*30/2=300
R=AB*AC*BC/(4S)=25*25*30/(4*300)=125/8
in triunghiul OBC, OB=OB=R=125/8
din teorema cosinusului, cosOBC=(OB^2+BC^2-OC^2)/(2*OB*BC)=BC^2/(2*OB*BC)=BC/(2*OB)=30/(2*125/8)=24/25