👤
a fost răspuns

sa se rezolve in multimea numerelor reale ecuatia log in baza 2 din x + log in baza 4 din x + log in baza 8 din x = 11/6

Răspuns :

In general stim ca
[tex]\log_{a^{n}}{b}=\frac{1}{n}\log_{a}{b}[/tex]
Atunci ecuatia devine
[tex]\log_{2}{x}+\log_{2^{2}}{x}+\log_{2^{3}}{x}=\log_{2}{x}+\frac{1}{2}\log_{2}{x}+\frac{1}{3}\log_{2}{x}=\frac{6+3+2}{6}\log_{2}{x}=\frac{11}{6}\log_{2}{x}=\frac{11}{6}\Rightarrow \log_{2}{x}=1\Rightarrow x=2[/tex]
Alesyo
Raspunsul il ai in poza
Vezi imaginea Alesyo