2^(123)=2^(41+41+41) =>2^(41)*2^(41)*2^(41)
5^(83)=5^(41+41+1)=5^(41)*5^(41)*5^(1)
2^(123)*5^(83)=2^(41)*2^(41)*2^(41)*5^(41)*5^(41)*5^(1)=> (2*2*2*5*5)^(41)*5 =>200^(41)*5, deci a=200^(41)*5
3^(205)=3^(5*41)=(3^(5))^(41)=243^(41) , deci b=243^(41)
cum 200^(41)*5<243^(41); rezulta ca a<b.