Răspuns :
ABC Δdreptunghic
t lui Pitagora
BC²=AB²+AC²=9+16=25, BC=√25=5 cm
aria ABC=ACxAB/2=3x4/2=6 cm²
aria=ADxBC/2=6
ADxBC=12
AD=12:BC=12/5 cm
t lui Pitagora
BC²=AB²+AC²=9+16=25, BC=√25=5 cm
aria ABC=ACxAB/2=3x4/2=6 cm²
aria=ADxBC/2=6
ADxBC=12
AD=12:BC=12/5 cm
Ipotenuza=5cm(3,4 si 5-numere pitagorice)
In Δdr.ADC AD²=AC²-DC² =>AD²=16-DC²
In Δdr.ADB AD²=AB²-DB² =>AD²=9-DB²
CD+DB=5
16-DC²=9-DB²
16-9=DC²-DB²
7=(DC-DB)(DC+DB)
7=5(DC-DB)
=>DC-DB=7/5
DC+DB=5
___________
2DC / =32/5 =>DC=32/10=16/5
DB=5-32/10=18/10=9/5
Teorema inaltimii spune
AD²=CDxDB
AD²=16/5x9/5
AD²=144/25
=>AD=12/5
In Δdr.ADC AD²=AC²-DC² =>AD²=16-DC²
In Δdr.ADB AD²=AB²-DB² =>AD²=9-DB²
CD+DB=5
16-DC²=9-DB²
16-9=DC²-DB²
7=(DC-DB)(DC+DB)
7=5(DC-DB)
=>DC-DB=7/5
DC+DB=5
___________
2DC / =32/5 =>DC=32/10=16/5
DB=5-32/10=18/10=9/5
Teorema inaltimii spune
AD²=CDxDB
AD²=16/5x9/5
AD²=144/25
=>AD=12/5