Răspuns :
y=log[a](√(2x-1)+1)=>
a^y=√(2x-1)+1
a^y-1=√(2x-1)
2x-1=(a^y-1)²
x=[(a^y-1)²+1 ]/2 x→y
f^(-1)(x)=[(a^x-1)²+1]/2 ≤5
(a^x-1)²≤9
a^x-1 ∈[-3 ,3]
a^x∈[-2,4] dar a^x>0 ∀x =>
a^x∈(0,4]
x∈(-∞, log[a]a^4]∩(1/2 ,∞)=
[1/2 , log[a]a^4)
∩
a^y=√(2x-1)+1
a^y-1=√(2x-1)
2x-1=(a^y-1)²
x=[(a^y-1)²+1 ]/2 x→y
f^(-1)(x)=[(a^x-1)²+1]/2 ≤5
(a^x-1)²≤9
a^x-1 ∈[-3 ,3]
a^x∈[-2,4] dar a^x>0 ∀x =>
a^x∈(0,4]
x∈(-∞, log[a]a^4]∩(1/2 ,∞)=
[1/2 , log[a]a^4)
∩